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Consider the problem of determination of the life-
time of a satellite moving over the near-Earth elliptical
orbit. The direct integration of the equations of motion
of a satellite, even with ignoring its angular motion,
requires large computer time expenses. By this reason,
it is a common practice in this case to use one of the
forms of the averaged system of equations describing
the variation of “osculating” elements of the orbit (see
[1]–[4]). Neglecting the rotation of the Earth and the
non-central character of the gravity field, we write the
equations of motion of a satellite as [2]
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 is the quantity, which

is invariant over the Keplerian trajectory and slowly
changes during the satellite deceleration; 

 

ϕ

 

 is the geo-
centric angle; 

 

p

 

 is the ellipse parameter; 

 

r

 

 is the distance
to the Earth’s center; 

 

R

 

 is the radius of the Earth; 

 

g

 

 is
the gravity acceleration on the Earth’s surface; 

 

ρ

 

 is the
atmospheric density; 

 

C

 

x
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S

 

, and 

 

m

 

 are the drag coeffi-
cient, the characteristic area and the mass of a satellite.

The values of 
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 correspond to the points of perigee (
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)

and apogee (
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). Here, 

 

ε

 

 is the eccentricity of the
orbit.

We take advantage of one of versions of the averag-
ing method described and substantiated in [5] (see also
[6]). We consider the aerodynamic drag of a satellite to
be small (low atmospheric density); then 

 

η

 

 represents a
quantity slowly varying during the flight, and the vari-
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 over one period of revolution is described by
the formula
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We define the integral of action, corresponding to
equation (1), at the “frozen” value of 

 

η

 

 as
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Here, the integral is taken over one period of satel-
lite’s revolution around the Earth, and the function
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 on a growing branch of 

 

u

 

(
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)

 

 is determined by

the following formula
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According to [5], the equations describing the vari-

ation of osculating elements 

 

u

 

p

 

 = 

 

 and variation of

the period-averaged value 

 

η

 

 = 

 

, for which we retain

the former designation, have the form:
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where  and 

 

 

 

denote the right-hand side of rela-

tion (2), averaged over the period of revolution, with a

weight of 1 and , respectively.
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Taking into account that

(8)

we obtain the system of equations

(9)

(10)

where, in accordance with [5],

(11)

and the integral in the denominator of the right-hand
side of (10) is easily calculable:

(12)

We first write out the approximate expressions for
integrals in the numerator of the right-hand sides of
equations (9) and (10) for the case (a) of low eccentric-
ity, where the following inequality is satisfied:

ε ! 1, (13)

and, hence,

(14)

We suppose that for r ≥ rp the density is an exponen-
tial function of the altitude

(15)

where ρp = ρ(rp).

In the case under consideration, when calculating
the integrals in the numerator of expressions (9) and
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(10) it is convenient to pass to the independent variable
ϕ and to obtain the well-known result (see, e.g., [3]):

(16)

where x = λ(p – rp), I0(x) is the modified Bessel function
(see [7]).

Similarly, we obtain

(17)

In deriving formulas (16) and (17) we have used the
relation ([7]):

(18)

Note that the formulas written above are based only
on assumption (13), but the parameter λpε is not con-
sidered to be small, since the value of λp for the Earth
equals 100–1000 (remind that in the analysis of re-
entry trajectories the inequality Rλ @ 1 is frequently
used, [8]).

Consider now the other limiting case (b), where the
osculating ellipse is strongly elongated; in this case ε =
O(1),

(19)

In this case, calculating the integrals in the numera-
tor of right-hand sides of (9) and (10) it is convenient to
use the altitude as the variable of integration and to
replace the upper limit of integration by the infinity,
taking (19) into account.

Assuming the value of λp to be a “large” parameter,
we obtain the asymptotic estimate:
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